78,862 research outputs found

    The stable braid group and the determinant of the Burau representation

    Full text link
    This article gives certain fibre bundles associated to the braid groups which are obtained from a translation as well as conjugation on the complex plane. The local coefficient systems on the level of homology for these bundles are given in terms of the determinant of the Burau representation. De Concini, Procesi, and Salvetti [Topology 40 (2001) 739--751] considered the cohomology of the n-th braid group B_n with local coefficients obtained from the determinant of the Burau representation, H^*(B_n;Q[t^{+/-1}]). They show that these cohomology groups are given in terms of cyclotomic fields. This article gives the homology of the stable braid group with local coefficients obtained from the determinant of the Burau representation. The main result is an isomorphism H_*(B_infty; F[t^{+/-1}])-->H_*(Omega^2S^3; F) for any field F where Omega^2S^3 denotes the double loop space of the 3-connected cover of the 3-sphere. The methods are to translate the structure of H_*(B_n;F[t^{+/-1}]) to one concerning the structure of the homology of certain function spaces where the answer is computed.Comment: This is the version published by Geometry & Topology Monographs on 29 January 200

    Spin dynamics of current driven single magnetic adatoms and molecules

    Get PDF
    A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin relaxation time, the STM current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin flip assisted tunneling experiments, including a single Mn atom, a Mn dimer and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the non-equilibrium spin dynamics of the magnetic atom results in non-monotonic dI/dVdI/dV curves. In the case of spin polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or anti-parallel to the magnetic moment of the tip. Thus, spin polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.Comment: 15 pages, 12 figure

    Backscattering and secondary-electron emission from metal targets of various thicknesses

    Get PDF
    Backscattering and secondary electron emission from metal targets of various thicknesse

    Empirical equations for electron backscattering coefficients

    Get PDF
    Empirical equations for electron backscattering coefficient

    Asymptotic Methods for Metal Oxide Semiconductor Field Effect Transistor Modeling

    Get PDF
    The behavior of metal oxide semiconductor field effect transistors (MOSFETs) with small aspect ratio and large doping levels is analyzed using formal perturbation techniques. Specifically, the influence of interface layers in the potential on the averaged channel conductivity is closely examined. The interface and internal layers that occur in the potential are resolved in the limit of large doping using the method of matched asymptotic expansions. This approach, together with other asymptotic techniques, provides both a pointwise description of the state variables as well as lumped current-voltage relations that vary uniformly across the various bias regimes. These current-voltage relations are derived for a variable doping model respresenting a particular class of devices

    Constraints on Lorentz Invariance Violation from Fermi-Large Area Telescope Observations of Gamma-Ray Bursts

    Get PDF
    We analyze the MeV/GeV emission from four bright Gamma-Ray Bursts (GRBs) observed by the Fermi-Large Area Telescope to produce robust, stringent constraints on a dependence of the speed of light in vacuo on the photon energy (vacuum dispersion), a form of Lorentz invariance violation (LIV) allowed by some Quantum Gravity (QG) theories. First, we use three different and complementary techniques to constrain the total degree of dispersion observed in the data. Additionally, using a maximally conservative set of assumptions on possible source-intrinsic spectral-evolution effects, we constrain any vacuum dispersion solely attributed to LIV. We then derive limits on the "QG energy scale" (the energy scale that LIV-inducing QG effects become important, E_QG) and the coefficients of the Standard Model Extension. For the subluminal case (where high energy photons propagate more slowly than lower energy photons) and without taking into account any source-intrinsic dispersion, our most stringent limits (at 95% CL) are obtained from GRB090510 and are E_{QG,1}>7.6 times the Planck energy (E_Pl) and E_{QG,2}>1.3 x 10^11 GeV for linear and quadratic leading order LIV-induced vacuum dispersion, respectively. These limits improve the latest constraints by Fermi and H.E.S.S. by a factor of ~2. Our results disfavor any class of models requiring E_{QG,1} \lesssim E_Pl.Comment: Accepted for publication by Physical Review

    Note on the Kaplan-Yorke dimension and linear transport coefficients

    Full text link
    A number of relations between the Kaplan-Yorke dimension, phase space contraction, transport coefficients and the maximal Lyapunov exponents are given for dissipative thermostatted systems, subject to a small external field in a nonequilibrium stationary state. A condition for the extensivity of phase space dimension reduction is given. A new expression for the transport coefficients in terms of the Kaplan-Yorke dimension is derived. Alternatively, the Kaplan-Yorke dimension for a dissipative macroscopic system can be expressed in terms of the transport coefficients of the system. The agreement with computer simulations for an atomic fluid at small shear rates is very good.Comment: 12 pages, 5 figures, submitted to J. Stat. Phy

    Basis-conjugating automorphisms of a free group and associated Lie algebras

    Get PDF
    Let F_n = denote the free group with generators {x_1,...,x_n}. Nielsen and Magnus described generators for the kernel of the canonical epimorphism from the automorphism group of F_n to the general linear group over the integers. In particular among them are the automorphisms chi_{k,i} which conjugate the generator x_k by the generator x_i leaving the x_j fixed for j not k. A computation of the cohomology ring as well as the Lie algebra obtained from the descending central series of the group generated by chi_{k,i} for i<k is given here. Partial results are obtained for the group generated by all chi_{k,i}.Comment: This is the version published by Geometry & Topology Monographs on 22 February 200

    Comment on "Breakdown of the Internet under Intentional Attack"

    Full text link
    We obtain the exact position of the percolation threshold in intentionally damaged scale-free networks.Comment: 1 page, to appear in Phys. Rev. Let
    • …
    corecore